Precision Measurement of CP Violation in $D^0 \to \pi^+\pi^-$ at CDF

A. Di Canto

INFN & University of Pisa, Fermilab

On behalf of the CDF collaboration

X International Conference on Heavy Quarks and Leptons 11-15 Oct 2010, INFN - Laboratori Nazionali di Frascati (Italy)

Today

25th anniversary of the first collisions in the Tevatron

CP violation in the Charm sector

- Precision measurements of CP violation probe the possible existence of New Physics beyond what is currently accessible through direct searches.
- CP violation observed so far is explained within the Standard Model and is far from sufficient to explain the matter-antimatter asymmetry of the Universe, so there must be something else...
- Until recently most CP violation measurements have been done in the area of down-quarks (s, b), so what about up-quarks? Why not look where we did not look before?
- ullet Charm is a unique window to New Physics because it probes up-quark sector (unaccessible through t or u quarks).
- \bullet Observed D^0 mixing rate is large, consistent only with most stretched Standard Model predictions. Could this be a first hint of New Physics?

CP asymmetry in $D^0 \to \pi^+\pi^-$ decays

What do we measure?

$$A_{ extsf{CP}}(D^0 o\pi^+\pi^-) = rac{\Gamma(D^0 o\pi^+\pi^-) - \Gamma(\overline{D}{}^0 o\pi^-\pi^+)}{\Gamma(D^0 o\pi^+\pi^-) + \Gamma(\overline{D}{}^0 o\pi^-\pi^+)}$$

- CP symmetric initial state $(p\bar{p})$ ensures charge symmetric production.
- Tag flavor at production time through $D^{\star} \to D^0 \pi_s$ decay.
- With ~ 215 K candidates the expected statistical resolution is $\sim 0.2\%$.
- Small Q-value in D^* decay causes π_s to be low momentum:
 - typically in the range where detector efficiency for tracks of opposite charge is asymmetric to the level of a few percents.
- Need to suppress detector charge asymmetry by more than one order of magnitude to control systematics at $\sim 0.1\%$.
- Turns out this can be done with a very high degree of confidence using only data, no need to rely on Monte Carlo.

How are we doing it?

5 / 15

Combine the "raw" asymmetries of three different event samples to minimize systematic errors caused by the detector induced asymmetries:

The physical A_{CP} could be extracted through the combination:

$$A_{\mathrm{CP}}(\pi\pi) = A_{\mathrm{CP}}^{\mathrm{raw}}(\pi\pi^{\star}) - A_{\mathrm{CP}}^{\mathrm{raw}}(K\pi^{\star}) + A_{\mathrm{CP}}^{\mathrm{raw}}(K\pi)$$

Counting $D^\star\text{-tagged }D^0\to\pi^+\pi^-$

6 / 15

Counting D^\star -tagged $D^0 \to K^-\pi^+$

Counting untagged $D^0 \to K^-\pi^+$ (1)

Counting untagged $D^0 \to K^-\pi^+$ (1)

8 / 15

Counting untagged $D^0 \to K^-\pi^+$ (1)

- two statistically independent samples with half the events each
- can easily afford to loose a factor of two in statistics here
- √ signal is in narrow peak (ignore DCS contribution)

Counting untagged $D^0 \to K^-\pi^+$ (2)

9 / 15

Systematics

Summary of all sources of systematic error:

Source of systematic uncertainty	Variation on $A_{\sf CP}(\pi\pi)$
Approximations in the method	0.009%
Beam drag effects	0.004%
Contamination of non-prompt D^0 s	0.034%
Templates used in fits	0.010%
Templates charge differences	0.098%
Asymmetries from non-subtracted backgrounds	0.018%
Imperfect sample reweighing	0.0005%
Sum in quadrature	0.105%

In 5.94 fb⁻¹ of CDF data we measure

$$A_{ extsf{CP}}(D^0 o \pi^+\pi^-) = ig[+0.22 \pm 0.24 \ (stat.) \pm 0.11 \ (syst.)ig]\%$$

Public documentation: http://www-cdf.fnal.gov/physics/new/bottom/100916.blessed-Dpipi6.0/

World's best measurement so far

BaBar on 386/fb

$$[-0.24 \pm 0.52 \ (stat.) \pm 0.22 \ (syst.)]\%$$

Phys. Rev. Lett. 100 (2008) 061803

Belle on 540/fb

$$[+0.43 \pm 0.52 \; (stat.) \pm 0.12 \; (syst.)]\%$$

Phys. Lett. B 670 (2008) 190

 To correctly compare with B-factories we need to better understand what we measured.

12 / 15

Time-integrated CP asymmetry

$$A_{\mathsf{CP}}(\pi^+\pi^-) = \frac{\Gamma(D^0 \to \pi^+\pi^-) - \Gamma(\overline{D}^0 \to \pi^-\pi^+)}{\Gamma(D^0 \to \pi^+\pi^-) + \Gamma(\overline{D}^0 \to \pi^-\pi^+)},$$

receives contribution from different amplitudes in D^0 and \overline{D}^0 decays (direct CP violation) but also from mixing induced effects (indirect CP violation).

- The latter source produces a time-dependent asymmetry that persists when integrated over time.
- Since flavour mixing parameters are small in the charm sector, at first order, the measured integrated asymmetry is the linear combination of the two contributions

$$A_{\mathrm{CP}}(\pi^+\pi^-) pprox a_{\mathrm{CP}}^{\mathrm{dir}} + rac{\langle t
angle}{ au} a_{\mathrm{CP}}^{\mathrm{ind}}$$

where t/τ is the proper decay time in unit of D^0 lifetime.

• The measurement describes a straight band in the plane $(a_{\rm CP}^{\rm ind}, a_{\rm CP}^{\rm dir})$ with slope given by the average proper time of the $D^0 \to \pi^+\pi^-$ sample.

Comparing with B-factories (1)

at B-factories

 $\langle t \rangle pprox au$

Comparing with B-factories (2)

Conclusions

- Most precise A_{CP} measurement ever in the Charm sector
- We have now enough precision to probe the Charm sector for new physics in a significant way
- High precision measurements competitive or even superior to the B-factories are possible at the Tevatron
- Still limited by statistics and will improve with integrated luminosity (5.9 → 10 → 20 fb⁻¹?)
- Short term prospect: $D^0 \to K^+K^-$

